Solid State High Throughput Screening Microscopy

Author:

Ashraf M.,Mohanan S.,Sim B,Tam A.,Brousseau D.,Thibault S.,Corbett A.,Bub G.

Abstract

We introduce a solid state high throughput screening (ssHTS) imaging modality that uses a novel Newtonian telescope design to image multiple spatially separated samples without moving parts or robotics. Conventional high-throughput imaging modalities either require movement of the sample to the focal plane of the imaging system1–3 or movement of the imaging system itself4,5, or use a wide-field approach to capture several samples in one frame. Schemes which move the sample or the imaging system can be mechanically complex and are inherently slow, while wide-field imaging systems have poor light collection efficiency and resolution compared to systems that image a single sample at a given time point. Our proposed ssHTS system uses a large parabolic reflector and an imaging lenses positioned at their focal distances above each sample. A fast LED array sequentially illuminate samples to generate images that are captured with a single camera placed at the focal point of the reflector. This optical configuration allows each sample to completely fill a sensors field of view. Since each LED illuminates a single sample and LED switch times are very fast, images from spatially separated samples can be captured at rates limited only by the camera’s frame rate. The system is demonstrated by imaging cardiac monolayer and Caenorhabditis elegans (C. elegans) preparations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3