Induction of the nicotinamide riboside kinase NAD+ salvage pathway in skeletal myopathy of H6PDH KO mice

Author:

Doig Craig L.,Zielinska Agnieszka E.,Fletcher Rachel S.,Oakey Lucy A.,Elhassan Yasir S.,Garten Antje,Cartwright David,Heising Silke,Alsheri Ahmed,Watson David G.,Adamski Jerzy,Tennant Daniel A.,Lavery Gareth G.

Abstract

AbstractBackgroundHexose-6-Phosphate Dehydrogenase (H6PDH) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PDH with 11β-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PDH in ER/SR NAD(P)(H) homeostasis is incomplete. Muscle specific lack of H6PDH results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PDH deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation.MethodsWe analysed skeletal muscle from H6PDH knockout (H6PDKO), H6PDH and NRK2 double knockout (DKO) and wild-type (WT) mice. H6PDKO mice were supplemented with the NAD+ precursor nicotinamide riboside. Skeletal muscle samples were subject to biochemical analysis including NAD(H) measurement, LC/MS based metabolomics, Western immunoblotting, and high resolution mitochondrial respirometry. Genetic and supplement models were assessed for degree of myopathy compared to H6PDKO.ResultsH6PDKO skeletal muscle showed adaptations in the routes regulating nicotinamide and NAD+ biosynthesis, with significant activation of the Nicotinamide Riboside Kinase 2 (NRK2) pathway. Associated with changes in NAD+ biosynthesis H6PDKO muscle had impaired mitochondrial respiratory capacity with altered mitochondrial acylcarnitine and acetyl CoA metabolism. Boosting NAD+ levels through the NRK2 pathway using the precursor nicotinamide riboside had no effect to mitigate ER stress and dysfunctional mitochondrial respiratory capacity or Acetyl-CoA metabolism. Similarly, H6PDKO/NRK2 double KO mice did not display an exaggerated timing or severity of myopathy or overt change in mitochondrial metabolism despite depression of NAD+ availability.ConclusionsThese findings suggest a complex metabolic response to changes to muscle SR NADP(H) redox status that result in impaired mitochondrial energy metabolism and activation of cellular NAD+ salvage pathways. It is possible that SR can sense and signal perturbation in NAD(P)(H) that cannot be rectified in the absence of H6PDH. Whether NRK2 pathway activation is a direct response to changes in SR NAD(P)(H) availability or adaptation to deficits in metabolic energy availability remains to be resolved.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3