High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue

Author:

Janesick AmandaORCID,Shelansky Robert,Gottscho Andrew D.,Wagner Florian,Rouault Morgane,Beliakoff Ghezal,de Oliveira Michelli Faria,Kohlway Andrew,Abousoud Jawad,Morrison Carolyn A.,Drennon Tingsheng Yu,Mohabbat Seayar H.,Williams Stephen R.,Taylor Sarah E.B.,

Abstract

AbstractSingle cell and spatial technologies that profile gene expression across a whole tissue are revolutionizing the resolution of molecular states in clinical tissue samples. Commercially available methods that characterize either single cell or spatial gene expression are currently limited by low sample throughput and/or gene plexy, lack of on-instrument analysis, and the destruction of histological features and epitopes during the workflow. Here, we analyzed large, serial formalin-fixed, paraffin-embedded (FFPE) human breast cancer sections using a novel FFPE-compatible single cell gene expression workflow (Chromium Fixed RNA Profiling; scFFPE-seq), spatial transcriptomics (Visium CytAssist), and automated microscopy-based in situ technology using a 313-plex gene panel (Xenium In Situ). Whole transcriptome profiling of the FFPE tissue using scFFPE-seq and Visium facilitated the identification of 17 different cell types. Xenium allowed us to spatially resolve these cell types and their gene expression profiles with single cell resolution. Due to the non-destructive nature of the Xenium workflow, we were able to perform H&E staining and immunofluorescence on the same section post-processing which allowed us to spatially register protein, histological, and RNA data together into a single image. Integration of data from Chromium scFFPE-seq, Visium, and Xenium across serial sections allowed us to do extensive benchmarking of sensitivity and specificity between the technologies. Furthermore, data integration inspired the interrogation of three molecularly distinct tumor subtypes (low-grade and high-grade ductal carcinoma in situ (DCIS), and invasive carcinoma). We used Xenium to characterize cellular composition and differentially expressed genes within these subtypes. This analysis allowed us to draw biological insights about DCIS progression to infiltrating carcinoma, as the myoepithelial layer degrades and tumor cells invade the surrounding stroma. Xenium also allowed us to further predict the hormone receptor status of tumor subtypes, including a small 0.1 mm2DCIS region that was triple positive forESR1(estrogen receptor),PGR(progesterone receptor), andERBB2(human epidermal growth factor receptor 2, a.k.a. HER2) RNA. In order to derive whole transcriptome information from these cells, we used Xenium data to interpolate the cell composition of Visium spots, and used Visium whole transcriptome information to discover new biomarkers of breast tumor subtypes. We demonstrate that scFFPE-seq, Visium, and Xenium independently provide information about molecular signatures relevant to understanding cancer heterogeneity. However, it is the integration of these technologies that leads to even deeper insights, ushering in discoveries that will progress oncology research and the development of diagnostics and therapeutics.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Ductal Carcinoma In Situ: Terminology, Classification, and Natural History

2. Isolation of Adipose Tissue Nuclei for Single-Cell Genomic Applications;J. Vis. Exp.,2020

3. Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid;Cell Oncol (Dordr),2015

4. A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells;Cell Reports Medicine,2021

5. The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide;Cancer,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3