A Generalizable Nanopore Sensor for Highly Specific Protein Detection at Single-Molecule Precision

Author:

Ahmad Mohammad,Ha Jeung-Hoi,Mayse Lauren A.,Presti Maria F.,Wolfe Aaron J.,Moody Kelsey J.,Loh Stewart N.ORCID,Movileanu LiviuORCID

Abstract

AbstractProtein detection and biomarker profiling have wide-ranging implications in many areas of basic research and molecular diagnostics. Substantial progress has been made in protein analytics using nanopores and the resistive-pulse technique. Yet, a long-standing challenge is implementing specific binding interfaces for detecting proteins without the steric hindrance of the pore interior. To overcome this technological difficulty, we formulate a new class of sensing elements made of a programmable antibody-mimetic binder fused to a monomeric protein nanopore. This way, such a modular design significantly expands the utility of nanopore sensors to numerous proteins while preserving their architecture, specificity, and sensitivity. We prove the power of this approach by developing and validating nanopore sensors for protein analytes that drastically vary in size, charge, and structural complexity. These analytes produce unique electrical signatures that depend on their identity and quantity and the binder-analyte assembly at the nanopore tip. From a practical point of view, our sensors unambiguously probe protein recognition events without the necessity of using any additional exogenous tag. The outcomes of this work will impact biomedical diagnostics by providing a fundamental basis and tools for protein biomarker detection in biofluids.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3