Decoding brain basis of laughter and crying in natural scenes

Author:

Nummenmaa LauriORCID,Malèn Tuulia,Nazari-Farsani Sanaz,Seppälä Kerttu,Sun LihuaORCID,Karlsson Henry K.,Hudson MatthewORCID,Hirvonen Jussi,Sams Mikko,Scott Sophie,Putkinen Vesa

Abstract

AbstractLaughter and crying are universal signals of prosociality and distress, respectively. Here we investigated the functional brain basis of perceiving laughter and crying using naturalistic functional magnetic resonance imaging (fMRI) approach. We measured haemodynamic brain activity evoked by laughter and crying in three experiments with 100 subjects in each. The subjects i) viewed a 20-minute medley of short video clips, and ii) 30 minutes of a full-length feature film, and iii) listened to 15 minutes of a radio play that all contained bursts of laughter and crying. Intensity of laughing and crying in the videos and radio play was annotated by independent observes, and the resulting time series were used to predict hemodynamic activity to laughter and crying episodes. Multivariate pattern analysis (MVPA) was used to test for regional selectivity in laughter and crying evoked activations. Laughter induced widespread activity in ventral visual cortex and superior and middle temporal and motor cortices. Crying activated thalamus, cingulate cortex along the anterior-posterior axis, insula and orbitofrontal cortex. Both laughter and crying could be decoded accurately (66-77% depending on the experiment) from the BOLD signal, and the voxels contributing most significantly to classification were in superior temporal cortex. These results suggest that perceiving laughter and crying engage distinct neural networks, whose activity suppresses each other to manage appropriate behavioral responses to others’ bonding and distress signals.Significance statementLaughter and crying are universal signals of prosociality and distress, respectively. They occur in complex, dynamic social settings with variable and dynamically evolving time courses. Here we used functional magnetic resonance imaging experiments and statistical pattern recognition for disentangling the neural systems that encode laughter and crying signals from dynamic and highly naturalistic scenes. These results show that separable neural circuits are engaged in processing distinct types of social attachment cues, and that pattern recognition during dynamic scene perception allows reliable separation of laughter and crying evoked activation patterns. Coordinated activity of these networks allows managing appropriate behavioral responses to others’ bonding and distress signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3