Abstract
AbstractSpinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients’ life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches to be used alone and in combination, to ensure improved and long-lasting benefits for SMA patients. Protein arginine methyltransferases (PRMT) are emerging as druggable epigenetic targets, with several small molecule PRMT inhibitors already in clinical trial stage. From a screen of highly potent and selective next generation epigenetic small molecules, we have identified MS023, a potent and selective type I PRMT inhibitor, able to promoteSMN2exon 7 inclusion and increase SMN protein levels in preclinical SMA model, by inhibiting the binding of splicing factor hnRNPA1 toSMN2pre-mRNA. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with theSMN2-targeting antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has very minimal off-target effects and that the added benefit of the combination therapy is mainly attributable to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA patients.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献