Abstract
AbstractHybridization is a complicated, oft-misunderstood process. Once deemed unnatural and uncommon, hybridization is now recognized as ubiquitous among species. But hybridization rates within and among communities are poorly understood despite the relevance to ecology, evolution, and conservation. To clarify, we examined hybridization across 75 freshwater fish communities within the Ozarks of the North American Interior Highlands (USA) by SNP genotyping 33 species (N=2,865 individuals; ddRAD). We found evidence of hybridization (70 putative hybrids; 2.4% of individuals) among 18 species-pairs involving 73% (24/33) of study species, with the majority being concentrated within one family (Leuciscidae/minnows; 15 species; 66 individuals). Interspecific genetic exchange— or introgression— was evident from 24 backcrossed individuals (10/18 species-pairs). Hybrids occurred within 42 of 75 communities (56%). Four selected environmental variables (species richness, protected area extent, precipitation [May and annually]) exhibited 73–78% accuracy in predicting hybrid occurrence via random forest classification. Our community-level assessment identified hybridization as spatially widespread and environmentally dependent (albeit predominantly within one large, diverse family). Our approach provides a more holistic survey of natural hybridization by testing a wide range of species-pairs, thus contrasting with more conventional evaluations.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献