Bayesian multilevel hidden Markov models identify stable state dynamics in longitudinal recordings from macaque primary motor cortex

Author:

Kirchherr SebastienORCID,Moraga Sebastian MildinerORCID,Coudé Gino,Bimbi MarcoORCID,Ferrari Pier FORCID,Aarts EmmekeORCID,Bonaiuto James JORCID

Abstract

AbstractNeural populations, rather than single neurons, may be the fundamental unit of cortical computation. Analyzing chronically recorded neural population activity is challenging not only because of the high dimensionality of activity in many neurons, but also because of changes in the recorded signal that may or may not be due to neural plasticity. Hidden Markov models (HMMs) are a promising technique for analyzing such data in terms of discrete, latent states, but previous approaches have either not considered the statistical properties of neural spiking data, have not been adaptable to longitudinal data, or have not modeled condition specific differences. We present a multilevel Bayesian HMM which addresses these shortcomings by incorporating multivariate Poisson log-normal emission probability distributions, multilevel parameter estimation, and trial-specific condition covariates. We applied this framework to multi-unit neural spiking data recorded using chronically implanted multi-electrode arrays from macaque primary motor cortex during a cued reaching, grasping, and placing task. We show that the model identifies latent neural population states which are tightly linked to behavioral events, despite the model being trained without any information about event timing. We show that these events represent specific spatiotemporal patterns of neural population activity and that their relationship to behavior is consistent over days of recording. The utility and stability of this approach is demonstrated using a previously learned task, but this multilevel Bayesian HMM framework would be especially suited for future studies of long-term plasticity in neural populations.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Aarts, E. (2019). mHMMbayes: Multilevel Hidden Markov Models Using Bayesian Estimation (0.1.1.9002) [R]. https://cran.r-project.org/web/packages/mHMMbayes/mHMMbayes.pdf

2. A solution to dependency: using multilevel analysis to accommodate nested data

3. Full Bayes Poisson gamma, Poisson lognormal, and zero inflated random effects models: Comparing the precision of crash frequency estimates;Accident Analysis & Prevention,2013

4. A new look at the statistical model identification

5. Mixed Hidden Markov Models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3