Abstract
AbstractFlaviviruses are enveloped viruses causing high public concerns. Their maturation spans several cellular compartments having different pH. Thus, complex control mechanisms are in place to avoid premature maturation. Here we report the dynamical behavior at neutral and acidic pH of the precursor of the membrane fusion protein E of tick-borne encephalitis, showing the different stabilization of the E dimer and the role played by the small fusion-assisting protomer (pr). The comprehension, at atomic resolution, of the fine regulation of viral maturation will be fundamental to the development of efficient strategies against emerging viral threats.
Publisher
Cold Spring Harbor Laboratory