MUC13 negatively regulates tight junction proteins and intestinal epithelial barrier integrity via Protein Kinase C

Author:

Segui-Perez CeliaORCID,Stapels Daphne A.C.,Ma Ziliang,Su Jinyi,Passchier Elsemieke,Westendorp BartORCID,Wu WeiORCID,van Putten Jos P.M.,Strijbis KarinORCID

Abstract

AbstractRegulation and adaptation of intestinal epithelial barrier function is essential for human health. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in intestinal epithelial monolayers MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not result in increased TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC, which is in line with a predicted PKC motif in the MUC13 cytoplasmic tail. The responsible PKC member might be PKCδ based on elevated protein levels in the absence of MUC13. Our results identify MUC13 as a central player in TJ complex stability and intestinal barrier permeability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3