Graph-based Fusion Modeling and Explanation for Disease Trajectory Prediction

Author:

Tariq Amara,Tang Siyi,Sakhi Hifza,Celi Leo Anthony,Newsome Janice M.,Rubin Daniel L.,Trivedi Hari,Gichoy Judy Wawira,Patel Bhavik,Banerjee Imon

Abstract

AbstractWe propose a relational graph to incorporate clinical similarity between patients while building personalized clinical event predictors with a focus on hospitalized COVID-19 patients. Our graph formation process fuses heterogeneous data, i.e., chest X-rays as node features and non-imaging EHR for edge formation. While node represents a snap-shot in time for a single patient, weighted edge structure encodes complex clinical patterns among patients. While age and gender have been used in the past for patient graph formation, our method incorporates complex clinical history while avoiding manual feature selection. The model learns from the patient’s own data as well as patterns among clinically-similar patients. Our visualization study investigates the effects of ‘neighborhood’ of a node on its predictiveness and showcases the model’s tendency to focus on edge-connected patients with highly suggestive clinical features common with the node. The proposed model generalizes well by allowing edge formation process to adapt to an external cohort.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3