EMC holdase:CaV1.2/CaVβ3 complex and CaV1.2 channel structures reveal CaV assembly and drug binding mechanisms

Author:

Chen Zhou,Mondal Abhisek,Abderemane-Ali Fayal,Montano José,Zaro Balyn,Minor Daniel L.ORCID

Abstract

AbstractVoltage-gated ion channels (VGICs) comprise multiple structural units whose assembly is required for function1,2. There is scant structural understanding of how VGIC subunits assemble and whether chaperone proteins are required. High-voltage activated calcium channels (CaVs)3,4 are paradigmatic multi-subunit VGICs from electrically excitable tissues whose function and trafficking is powerfully shaped by interactions between pore-forming CaV1 or CaV2 CaVα13 and auxiliary CaVβ5, and CaVα2δ subunits6,7. Here, we present cryo-EM structures of human brain and cardiac CaV1.2 bound with CaVβ3 to a chaperone, the endoplasmic reticulum membrane protein complex (EMC)8,9, and of the isolated CaV1.2/CaVβ3/CaVα2δ-1 channel. These provide an unprecedented view of an EMC holdase:client complex and define EMC sites, the TM and Cyto docks, whose interaction with the client channel cause partial extraction of a pore subunit and splay open the CaVα2δ interaction site. The structures further identify the CaVα2δ binding site for gabapentinoid anti-pain and anti-anxiety drugs6, show that EMC and CaVα2δ channel interactions are mutually exclusive, and indicate that EMC to CaVα2δ handoff involves a Ca2+-dependent step and ordering of multiple CaV1.2 elements. Together, the structures unveil a CaV assembly intermediate and previously unknown EMC client binding sites that have broad implications for biogenesis of VGICs and other membrane proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural Biochemistry of Muscle Contraction;Annual Review of Biochemistry;2023-06-20

2. Structural basis for CaVα2δ:gabapentin binding;Nature Structural & Molecular Biology;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3