Predicting the temperature-driven development of stage-structured insect populations with a Bayesian hierarchical model

Author:

Studens KalaORCID,Bolker Ben,Candau Jean-Noel

Abstract

AbstractThe management of forest pests relies on an accurate understanding of the species’ phenology. Thermal performance curves (TPCs) have traditionally been used to model insect phenology; many such models have been proposed and fitted to data from both wild and laboratory-reared populations, most of which have used maximum likelihood estimation (MLE). Analyses typically present point estimates of parameters with confidence intervals, but estimates of the correlations among TPC parameters are rarely provided. Neglecting aspects of model uncertainty such as correlation among parameters may lead to incorrect confidence intervals of predictions. This paper implements a Bayesian hierarchical model of insect phenology incorporating individual variation, quadratic variation in development rates across insects’ larval stages, and non-parametric adjustment terms that allow for deviations from a parametric TPC. We use Hamiltonian Monte Carlo (HMC) for estimation; the model is fitted to a laboratory-reared spruce budworm population as a case study. We assessed the accuracy of the model using stratified, 10-fold cross-validation. Using the posterior samples, we found prediction intervals for spruce budworm development for a given year.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3