Abstract
AbstractIn previous research, miR-148a-3p deficiency was observed in bone malformation in hemifacial microsomia. Herein, in this article, we probed into the role of miR-148a-3p in bone physiology by utilizing miR-148a knock-out (KO) mice. Compared with wild-type (WT) or heterozygotic (HE) littermates, miR-148a knock-out mice manifested lower body weight, bone dysplasia with increased bone mass. Throughin-vitroexperiments, in terms of miR-148a-3p overexpression (miRNA mimic transfection) and knockout (primary cells from WT and KO littermates), we found that miR-148a-3p can suppress osteogenesis, either in the ALP activity or bone nodules formation. Afterward, by means of proteomics, combined with RNA-sequencing and prediction databases of microRNA targets (miRDB and TargetScan), nine candidate genes targeted by miR-148a-3p were identified. Among them, onlyItga11was regulated by mRNA degradation, while the others were modulated via post-transcriptional inhibition. Based on several online databases (GenePaint, BioGPS, STRING), Integrin Subunit Alpha 11 (Itga11) was suggested to play an essential role in osteogenesis and it was confirmed as one direct target of miR-148a-3p by dualluciferase reporter assay. Meanwhile, gene set enrichment analysis (GSEA) indicated activation of PI3K-Akt signaling pathway and WNT signaling pathway in miR-148a KO mice. The thereafter western blot confirmed that PI3K/Akt/GSK3/β-catenin signaling pathway was involved. Taken together, we demonstrated that miR-148a-3p can inhibit osteogenesis by targeting Itga11 via PI3K/Akt/GSK3/β-catenin pathway.
Publisher
Cold Spring Harbor Laboratory