Cell cycle alterations associate with a redistribution of mutation rates across chromosomal domains in human cancers

Author:

Salvadores MarinaORCID,Supek FranORCID

Abstract

AbstractSomatic mutations in human cells have a highly heterogeneous genomic distribution, with increased burden in late-replication time (RT), heterochromatic domains of chromosomes. This regional mutation density (RMD) landscape is known to vary between cancer types, in association with tissue-specific RT or chromatin organization. Here, we hypothesized that regional mutation rates additionally vary between individual tumors in a manner independent of cell type, and that recurrent alterations in DNA replication programs and/or chromatin organization may underlie this. Here, we identified various RMD signatures that describe a global genome-wide mutation redistribution across many megabase-sized domains in >4000 tumors. We identified two novel global RMD signatures of somatic mutation landscapes that were universally observed across various cancer types. First, we identified a mutation rate redistribution preferentially affecting facultative heterochromatin, Polycomb-marked domains, and enriched in subtelomeric regions. This RMD signature strongly reflects regional plasticity in DNA replication time and in heterochromatin domains observed across tumors and cultured cells, which was linked with a stem-like phenotype and a higher expression of cell cycle genes. Consistently, occurrence of this global mutation pattern in cancers is associated with altered cell cycle control via loss of activity of theRB1tumor suppressor gene. Second, we identified another independant global RMD signature associated with loss-of-function of theTP53pathway, mainly affecting the redistribution of mutation rates away from late RT regions. The local mutation supply towards 26%-75% cancer driver genes is altered in the tumors affected by the global RMD signatures detected herein, including additionally a known pattern of a general loss of mutation rate heterogeneity due to DNA repair failures that we quantify. Our study highlights that somatic mutation rates at the domain scale are variable across tumors in a manner associated with loss of cell cycle control viaRB1orTP53, which may trigger the local remodeling of chromatin state and the RT program in cancers.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3