Allelic compatibility in plant immune receptors facilitates engineering of new effector recognition specificities

Author:

Bentham Adam R.ORCID,De la Concepcion Juan CarlosORCID,Benjumea Javier VegaORCID,Jones SallyORCID,Mendel MelanieORCID,Stubbs JackORCID,Stevenson Clare E. M.ORCID,Maidment Josephine H.R.ORCID,Youles Mark,Kourelis JiorgosORCID,Zdrzałek RafałORCID,Kamoun SophienORCID,Banfield Mark J.ORCID

Abstract

SummaryEngineering expanded effector recognition in plant immune receptors is a promising prospect for generating new disease resistant crop varieties. However, modification of plant NLR receptors has proven challenging due to the lack of understanding of their context as part of complex immune systems. Here, we demonstrate a new avenue for NLR-mediated engineering that exploits the allelic diversity in the Pik NLR pair to allow for the generation of receptors with expanded recognition specificities, which would otherwise result in constitutive cell death. This work lays the foundation for the incorporation of new effector recognition motifs into the Pik system and advances the development of designer NLRs that can be tailored to specific secreted pathogen signatures.AbstractEngineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine rich repeat (NLRs) superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering novel disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defence responses that are deleterious to the plant. This may be due to plant NLRs associating in highly complex signalling networks that co-evolve together, and changes through breeding or genetic modification can generate incompatible combinations, resulting in autoimmune phenotypes. We have previously shown how alleles of the rice NLR pair Pik have differentially co-evolved, and how sensor/helper mismatching between non-co-evolved alleles triggers constitutive activation and cell death (De la Concepcion et al., 2021b). Here, we dissect incompatibility determinants in the Pik pair and found that HMA domains integrated in Pik-1 not only evolved to bind pathogen effectors but also likely co-evolved with other NLR domains to maintain immune homeostasis. This explains why changes in integrated domains can lead to autoactivation. We then used this knowledge to facilitate engineering of new effector recognition specificities overcoming initial autoimmune penalties. We show that by mismatching alleles of the rice sensor and helper NLRs Pik-1 and Pik-2, we can enable the integration of synthetic HMA domains with novel and enhanced recognition of an effector from the rice blast fungus. Taken together, our results reveal a new strategy for engineering NLRs, which has the potential to allow an expanded set of integrations and therefore new disease resistance specificities in plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3