The effect of morphine on rat microglial phagocytic activity: an in vitro study of brain region-, plating density-, sex-, morphine concentration-, and receptor-dependency

Author:

King’uyu David N.,Nti-Kyemereh Lily,Bonin Jesse L.,Feustel Paul J.,Tram Michelle,MacNamara Katherine C.,Kopec Ashley M.

Abstract

ABSTRACTOpioids have long been used for clinical pain management, but also have addictive properties that have contributed to the ongoing opioid epidemic. While opioid activation of opioid receptors is well known to contribute to reward and reinforcement, data now also suggest that opioid activation of immune signaling via toll-like receptor 4 (TLR4) may also play a role in addiction-like processes. TLR4 expression is enriched in immune cells, and in the nervous system is primarily expressed in microglia. Microglial phagocytosis is important for developmental, homeostatic, and pathological processes. To examine how morphine impacts microglial phagocytosis, we isolated microglia from adult male and female rat cortex and striatum and plated themin vitroat 10,000 (10K) or 50,000 cells/well densities. Microglia were incubated with neutral fluorescent microbeads to stimulate phagocytosis in the presence of one of four morphine concentrations. We found that the brain region from which microglia are isolated and plating density, but not morphine concentration, impact cell survivalin vitro. We found that 10-12M morphine, but not higher concentrations, increases phagocytosis in striatal microgliain vitroindependent of sex and plating density, while 10-12M morphine increased phagocytosis in cortical microgliain vitroindependent of sex, but contingent on plating density. Finally, we demonstrate that the effect of 10-12M morphine in striatal microglia plated at 10K density is mediated via TLR4, and not µORs. Overall, our data suggest that in rats, a morphine-TLR4 signaling pathway increases phagocytic activity in microglia independent of sex. This may be useful information for better understanding the possible neural outcomes associated with morphine exposures.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3