Computational investigation of the effect of reduced dynein velocity and reduced cargo diffusivity on slow axonal transport

Author:

Kuznetsov Ivan A.ORCID,Kuznetsov Andrey V.ORCID

Abstract

AbstractContributions of three components of slow axonal transport (SAT) were studied using a computational model: the anterograde motor (kinesin)-driven component, the retrograde motor (dynein)-driven component, and the diffusion-driven component. The contribution of these three components of SAT was investigated in three different segments of the axon: the proximal portion, the central portion, and the distal portion of the axon. MAP1B protein was used as a model system to study SAT because there are published experimental data reporting MAP1B distribution along the axon length and average velocity of MAP1B transport in the axon. This allows the optimization approach to be used to find values of model kinetic constants that give the best fit with published experimental data. The effects of decreasing the value of cargo diffusivity on the diffusion-driven component of SAT and decreasing the value of dynein velocity on the retrograde motor-driven component of SAT were investigated. We found that for the case when protein diffusivity and dynein velocity are very small, it is possible to obtain an analytical solution to model equations. We found that, in this case, the protein concentration in the axon is uniform. This shows that anterograde motor-driven transport alone cannot simulate a variation of cargo concentration in the axon. Most proteins are non-uniformly distributed in axons. They may exhibit, for example, an increased concentration closer to the synapse. The need to reproduce a non-uniform distribution of protein concentration may explain why SAT is bidirectional (in addition to an anterograde component, it also contains a retrograde component).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational investigation of the effect of reduced dynein velocity and reduced cargo diffusivity on slow axonal transport;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3