Author:
Padilla Andie E.,Hovell Candice,Mares Jeremy,Reumers Veerle,Joddar Binata
Abstract
AbstractThe use of microfluidic tissue-on-a-chip devices in conjunction with electrophysiology (EPHYS) techniques has become prominent in recent years to study cell-cell interactions critical to the understanding of cellular function in extreme environments, including spaceflight and microgravity. Current techniques are confined to invasive whole-cell recording at intermittent time points during spaceflight, limiting data acquisition and overall reduced insight on cell behaviour. Currently, there exists no validated technology that offers continuous EPHYS recording and monitoring in physiological systems exposed to microgravity. In collaboration with imec and SpaceTango, we have developed an enclosed, automated research platform that enables continuous monitoring of electrically active human cell cultures during spaceflight. The Neuropixels probe system (imec) will be integrated for the first time within an engineered in-vitro neuronal tissue-on-a-chip model that facilitates the EPHYS recording of cells in response to extracellular electrical activity in the assembled neuronal tissue platform. Our goal is to study the EPHYS recordings and understand how exposure to microgravity affects cellular interaction within human tissue-on-a-chip systems in comparison to systems maintained under Earth’s gravity. Results may be useful for dissecting the complexity of signals obtained from other tissue systems, such as cardiac or gastrointestinal, when exposed to microgravity. This study will yield valuable knowledge regarding physiological changes in human tissue-on-a-chip models due to spaceflight, as well as validate the use of this type of platform for more advanced research critical in potential human endeavours to space.
Publisher
Cold Spring Harbor Laboratory