Author:
Shrestha Raj,Nassar Zeyad D.,Hanson Adrienne R.,Iggo Richard,Townley Scott L.,Dehairs Jonas,Mah Chui Yan,Helm Madison,Ghodsi Mohammadreza,Pickering Marie,Watt Matthew J.,Quek Lake-Ee,Hoy Andrew J.,Tilley Wayne D.,Swinnen Johannes V.,Butler Lisa M.,Selth Luke A.
Abstract
ABSTRACTProstate tumours are highly reliant on lipids for energy, growth and survival. Activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes in prostate cancer, although the molecular underpinnings of this relationship remain to be fully elucidated. Here, we identified Acyl-CoA Synthetase Medium Chain Family Members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 are upregulated in prostate tumours compared to non-malignant tissues and other cancer types. Both enzymes enhanced proliferation and protected PCa cells from deathin vitro, while silencing ACSM3 led to reduced tumour growth in an orthotopic xenograft model. We show that ACSM1 and ACSM3 are major regulators of the PCa lipidome and enhance energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation and cell death by ferroptosis. Conversely, over-expression of ACSM1/3 enabled PCa cells to survive toxic doses of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, these studies uncover a new link between AR and lipid metabolism and position ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献