How Cerebellar Architecture and Dense Activation Patterns Facilitate Online Learning in Dynamic Tasks

Author:

Perez Rotondo AdrianaORCID,Raman Dhruva V.,O’Leary TimothyORCID

Abstract

SummaryThe cerebellum has a distinctive architecture in which inputs undergo a massive size expansion in dimensionality in early layers. Marr and Albus’s classic codon theory and more recent extensions1–4argue that this architecture facilitates learning via pattern separation. The essence of this idea is that sparsely active clusters —‘codons’— of inputs are more easily separable in a higher dimensional representation. However, recent physiological data indicate that cerebellar activity is not sparse in the way anticipated by codon theory. Moreover, there is a conceptual gap between static pattern separation and the critical role of the cerebellum in dynamic tasks such as motor learning. We use mathematical analysis and simulations of cerebellar learning to identify specific difficulties inherent to online learning of dynamic tasks. We find that size expansions directly mitigate these difficulties, and that this benefit is maximised when granule cell activity is dense.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3