Core material and surface chemistry of Layer-by-Layer (LbL) nanoparticles independently direct uptake, transport, and trafficking in preclinical blood-brain barrier (BBB) models

Author:

Lamson Nicholas G.ORCID,Pickering Andrew J.,Wyckoff Jeffrey,Ganesh Priya,Straehla Joelle P.ORCID,Hammond Paula T.ORCID

Abstract

AbstractDevelopment of new treatments for neurological disorders, especially brain tumors and neurodegenerative diseases, is hampered by poor accumulation of new therapeutic candidates in the brain. Drug carrying nanoparticles are a promising strategy to deliver therapeutics, but there is a major need to understand interactions between nanomaterials and the cells of the blood-brain barrier (BBB), and to what degree these interactions can be predicted by preclinical models. Here, we use a library of eighteen layer-by-layer electrostatically assembled nanoparticles (LbL-NPs) to independently assess the impact of nanoparticle core stiffness and surface chemistry onin vitrouptake and transport in three common assays, as well as intracellular trafficking in hCMEC/D3 endothelial cells. We demonstrate that nanoparticle core stiffness impacts the magnitude of material transported, while surface chemistry influences how the nanoparticles are trafficked within the cell. Finally, we demonstrate that these factors similarly dictatein vivoBBB transport using intravital imaging through cranial windows in mice, and we discover that a hyaluronic acid surface chemistry provides an unpredicted boost to transport. Taken together, these findings highlight the importance of considering factors such as assay geometry, nanomaterial labelling strategies, and fluid flow in designing preclinical assays to improve nanoparticle screening throughput for drug delivery to the brain.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3