Endosomal removal and disposal of dysfunctional, immunostimulatory mitochondrial DNA

Author:

Newman Laura E.ORCID,Tadepalle Nimesha,Novak Sammy Weiser,Schiavon Cara R.ORCID,Rojas Gladys R.,Chevez Joshua A.,Lemersal Ian,Medina Michaela,Rocha Sienna,Towers Christina G.ORCID,Grotjahn Danielle A.ORCID,Manor UriORCID,Shadel Gerald S.ORCID

Abstract

Maternally inherited mitochondrial DNA (mtDNA) encodes essential subunits of the mitochondrial oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation1. This function of mtDNA contributes to antiviral resistance, but unfortunately also causes pathogenic inflammation in many disease contexts2. Cells experiencing mtDNA stress due to depletion of the mtDNA-packaging protein, Transcription Factor A, Mitochondrial (TFAM), or HSV-1 infection exhibit elongated mitochondria, mtDNA depletion, enlargement of nucleoids (mtDNA-protein complexes), and activation of cGAS/STING innate immune signaling via mtDNA released into the cytoplasm3. However, the relationships between altered mitochondrial dynamics and mtDNA-mediated activation of the cGAS-STING pathway remain unclear. Here, we show that entire enlarged nucleoids are released from mitochondria that remain bound to TFAM and colocalize with cGAS. These nucleoids arise at sites of mtDNA replication due to a block in mitochondrial fission at a stage when endoplasmic reticulum (ER) actin polymerization would normally commence, which we propose is a fission checkpoint to ensure that mtDNA has completed replication and is competent for segregation into daughter mitochondria. Released nucleoids also colocalize with the early endosomal marker RAB5 as well as the late endosomal marker RAB7 in TFAM-deficient cells and in response to mtDNA stress caused by the HSV-1 UL12.5 protein. Loss of RAB7 increases interferon stimulated gene (ISG) expression. Thus, we propose that defects in mtDNA replication and/or segregation enact a late mitochondrial fission checkpoint that, if persistent, leads to selective removal of dysfunctional nucleoids by a mitochondrial-endosomal pathway. Early steps in this pathway are prone to mtDNA release and cGAS-STING activation, but the immunostimulatory mtDNA is ultimately disposed of through a mechanism involving RAB7-containing late endosomes to prevent excessive innate immune signaling. This mtDNA quality control pathway might represent a therapeutic target to prevent mtDNA-mediated inflammation and associated pathology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3