Whole Human-Brain Mapping of Single Cortical Neurons for Profiling Morphological Diversity and Stereotypy

Author:

Han Xiaofeng,Guo Shuxia,Ji Nan,Li Tian,Liu Jian,Ye Xiangqiao,Wang Yi,Yun Zhixi,Xiong Feng,Rong Jing,Liu Di,Ma Hui,Wang Yujin,Huang Yue,Zhang Peng,Wu Wenhao,Ding Liya,Hawrylycz Michael,Lein Ed,Ascoli Giorgio A.,Xie Wei,Liu Lijuan,Zhang Liwei,Peng Hanchuan

Abstract

AbstractQuantification of individual cells’ morphology and their distribution at the whole brain scale is essential to understand the structure and diversity of cell types. Despite recent technological advances, especially single cell labeling and whole brain imaging, for many prevailing animal models, it is exceedingly challenging to reuse similar technologies to study human brains. Here we propose Adaptive Cell Tomography (ACTomography), a low-cost, high-throughput, high-efficacy tomography approach, based on adaptive targeting of individual cells suitable for human-brain scale modeling of single neurons to characterize their 3-D structures, statistical distributions, and extensible for other cellular features. Specifically, we established a platform to inject dyes into cortical neurons in surgical tissues of 18 patients with brain tumors or other conditions and 1 donated fresh postmortem brain. We collected 3-D images of 1746 cortical neurons, of which 852 neurons were subsequentially reconstructed to quantify their local dendritic morphology, and mapped to standard atlases both computationally and semantically. In our data, human neurons are more diverse across brain regions than by subject age or gender. The strong stereotypy within cohorts of brain regions allows generating a statistical tensor-field of neuron morphology to characterize 3-D anatomical modularity of a human brain.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3