Patient-specific deep offline artificial pancreas for blood glucose regulation in type 1 diabetes

Author:

Deng Yixiang,Arao Kevin,Mantzoros Christos S.,Karniadakis George Em

Abstract

AbstractDue to insufficient insulin secretion, patients with type 1 diabetes mellitus (T1DM) are prone to blood glucose fluctuations ranging from hypoglycemia to hyperglycemia. While dangerous hypoglycemia may lead to coma immediately, chronic hyperglycemia increases patients’ risks for cardiorenal and vascular diseases in the long run. In principle, an artificial pancreas – a closed-loop insulin delivery system requiring patients manually input insulin dosage according to the upcoming meals – could supply exogenous insulin to control the glucose levels and hence reduce the risks from hyperglycemia. However, insulin overdosing in some type 1 diabetic patients, who are physically active, can lead to unexpected hypoglycemia beyond the control of common artificial pancreas. Therefore, it is important to take into account the glucose decrease due to physical exercise when designing the next-generation artificial pancreas. In this work, we develop a deep reinforcement learning algorithm using a T1DM dataset, containing data from wearable devices, to automate insulin dosing for patients with T1DM. In particular, we build patient-specific computational models using systems biology informed neural networks (SBINN), to mimic the glucose-insulin dynamics for a few patients from the dataset, by simultaneously considering patient-specific carbohydrate intake and physical exercise intensity.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. The growing epidemic of diabetes mellitus;Current vascular pharmacology,2020

2. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040

3. C. Prevention , National diabetes statistics report, Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services (2020).

4. Prevalence of diagnosed diabetes in adults by diabetes type—united states, 2016;Morbidity and Mortality Weekly Report,2018

5. Care in diabetes—2022;Diabetes Care,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3