CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters

Author:

Tabuloc Christine A.ORCID,Kwok Rosanna S.ORCID,Chan Elizabeth C.,Hidalgo SergioORCID,Cai Yao D.ORCID,Chiu Joanna C.ORCID

Abstract

AbstractCircadian clock and chromatin remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin remodeling complex promotes the repression of circadian gene expression inDrosophila.In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to theperiod (per)promoter. We observed reduced BRM binding to the DNA inclknull flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to theperpromoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. This conclusion is further supported by elevated BRM binding to theperpromoter in flies subjected to constant light. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin remodeling complex.Author SummaryCircadian clocks are endogenous time-keeping mechanisms that allow organisms to anticipate and adapt to daily changes in their external environment. These clocks are driven by a molecular oscillator that generates rhythms in the expression of many genes, termed clock-controlled genes. The genomic DNA containing these clock-controlled genes are also modified in a rhythmic manner throughout the day. DNA are more tightly packaged with histone proteins when transcription of clock-controlled genes is repressed while the interaction between DNA and histone proteins are more relaxed during transcriptional activation. We found that two key clock proteins, CLOCK and TIMELESS, regulate daily rhythmicity in the binding of BRAHMA, a chromatin remodeler, to DNA spanning clock-controlled genes to facilitate their rhythmic gene expression cycles. Moreover, because TIMELESS is sensitive to light, our study provides new insights into how light can affect DNA structure and gene expression.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3