Geometric constraints on human brain function

Author:

Pang James C.ORCID,Aquino Kevin M.ORCID,Oldehinkel MarianneORCID,Robinson Peter A.ORCID,Fulcher Ben D.ORCID,Breakspear MichaelORCID,Fornito AlexORCID

Abstract

ABSTRACTThe brain’s anatomy constrains its function, but precisely how remains unclear. Here, we show that human cortical and subcortical activity, measured with magnetic resonance imaging under spontaneous and diverse task-evoked conditions, can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain’s geometry (i.e., its shape) rather than modes from complex inter-regional connectivity, as classically assumed. We then use these modes to show that task-evoked activations across >10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning >60 mm. Finally, we confirm theoretical predictions that the close link between geometry and function is explained by a dominant role for wave-like dynamics, showing that such dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views of brain function and identify a previously under-appreciated role of brain geometry that is predicted by a unifying and physically principled approach.

Publisher

Cold Spring Harbor Laboratory

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3