Rosetta’s Predictive Ability for Low-Affinity Ligand Binding in Fragment-Based Drug Discovery

Author:

Okwei Elleansar,Smith Shannon T.,Bender Brian J.,Allison Brittany,Ganguly Soumya,Geanes Alexander,Zhang Xuan,Ledwitch KaitlynORCID,Meiler JensORCID

Abstract

AbstractFragment-based drug discovery begins with the identification of small molecules with a molecular weight of usually less than 250 Da that weakly bind to the protein of interest. This technique is challenging for computational docking methods as binding is determined by only a few specific interactions. Inaccuracies in the energy function or slight deviations in the docking pose can lead to the prediction of incorrect binding or difficulties in ranking fragments inin silicoscreening. Here we test RosettaLigand by docking a series of fragments to a cysteine-depleted variant of the TIM-barrel protein, HisF. We compare the computational results with experimental NMR spectroscopy screens. NMR spectroscopy gives details on binding affinities of individual ligands, which allows assessment of the ligand-ranking ability by RosettaLigand, and also provides feedback on the location of the binding pocket, which serves as a reliable test of RosettaLigand’s ability to identify plausible binding poses. From a library screen of 3456 fragments, we identified a set of 31 ligands with intrinsic affinities to HisF with dissociation constants as low as 400 µM. The same library of fragments was blindly screenedin silico. RosettaLigand was able to rank binders before non-binders with an area under the curve (AUC) of the receiver operating characteristics (ROC) of 0.74. The docking poses observed for binders agreed with the binding pocket identified by NMR chemical shift perturbations for all fragments. Taken together, these results provide a baseline performance of RosettaLigand in a fragment-based drug discovery setting.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3