Machine learning on large-scale proteomics data identifies tissue- and cell type-specific proteins

Author:

Claeys TineORCID,Menu Maxime,Bouwmeester Robbin,Gevaert KrisORCID,Martens LennartORCID

Abstract

AbstractUsing data from 183 public human data sets from PRIDE, a machine learning model was trained to identify tissue and cell-type specific protein patterns. PRIDE projects were searched with ionbot and tissue/cell type annotation was manually added. Data from physiological samples were used to train a Random Forest model on protein abundances to classify samples into tissues and cell types. Subsequently, a one-vs-all classification and feature importance were used to analyse the most discriminating protein abundances per class. Based on protein abundance alone, the model was able to predict tissues with 98% accuracy, and cell types with 99% accuracy. The F-scores describe a clear view on tissue-specific proteins and tissue-specific protein expression patterns. In-depth feature analysis shows slight confusion between physiologically similar tissues, demonstrating the capacity of the algorithm to detect biologically relevant patterns. These results can in turn inform downstream uses, from identification of the tissue of origin of proteins in complex samples such as liquid biopsies, to studying the proteome of tissue-like samples such as organoids and cell lines.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3