Functional genomics of cattle through integration of multi-omics data

Author:

Beiki Hamid,Murdoch Brenda M.,Park Carissa A.,Kern Chandlar,Kontechy Denise,Becker Gabrielle,Rincon Gonzalo,Jiang Honglin,Zhou HuaijunORCID,Thorne Jacob,Koltes James E.,Michal Jennifer J.,Davenport Kimberly,Rijnkels Monique,Ross Pablo J.ORCID,Hu Rui,Corum Sarah,McKay Stephanie,Smith Timothy P.L.,Liu Wansheng,Ma Wenzhi,Zhang Xiaohui,Xu Xiaoqing,Han Xuelei,Jiang Zhihua,Hu Zhi-Liang,Reecy James M.

Abstract

AbstractFunctional annotation of the bovine genome was performed by characterizing the spectrum of RNA transcription using a multi-omics approach, combining long- and short-read transcript sequencing and orthogonal data to identify promoters and enhancers and to determine boundaries of open chromatin. A total number of 171,985 unique transcripts (50% protein-coding) representing 35,150 unique genes (64% protein-coding) were identified across tissues. Among them, 159,033 transcripts (92% of the total) were structurally validated by independent datasets such as PacBio Iso-seq, ONT-seq, de novo assembled transcripts from RNA-seq, or Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive independent data from different technologies such as WTTS-seq, RAMPAGE, ChIP-seq, and ATAC-seq. A large proportion of identified transcripts (69%) were novel, of which 87% were produced by known genes and 13% by novel genes. A median of two 5’ untranslated regions was detected per gene, an increase from Ensembl and NCBI annotations (single). Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as non-coding genes in fetal tissues, but as protein coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 known gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available QTL data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. These validated results show significant improvement over current bovine genome annotations.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3