Gradual cerebral hypoperfusion in a knock-in mouse model of Alzheimer’s disease triggers cortical network dysfunctions

Author:

Singh SurjeetORCID,Lacoursiere Sean G.,Mehla Jogender,Nazari Mojtaba,Sutherland Robert J.ORCID,McDonald Robert J.,Mohajerani Majid H.ORCID

Abstract

AbstractAlzheimer’s disease (AD) is characterized neuropathologically by amyloid-β (Aβ) plaques and neurofibrillary tangles. Vascular pathology caused by chronic cerebral hypoperfusion (HP) is hypothesised to exacerbate AD pathology and has emerged as an increasing cause of age-related cognitive impairment. In this study we examined the effects of gradual cerebral HP on cognitive dysfunction, Aβ pathology, microgliosis, and cortical network dynamics in C57BL/6J mice and a single App knock-in mouse model of AD (AppNL-G-F). We performed unilateral common carotid artery gradual occlusion (UCAgO) in two-month-old mice using an ameroid constrictor. At 4 months of age, animals were tested in a behavioral battery consisting of tests of spatial learning and memory (Morris water task), recognition memory (novel object recognition task), and motor coordination (balance beam). Following behavioural testing,in vivomesoscale wide-field voltage imaging was done to assess cortical functional connectivity and sensory-evoked cortical activity, and brains were harvested for pathology characterization using immunohistochemistry. We found that UCAgO reduced cerebral blood flow (CBF) in the occluded hemisphere (OH), however, subtle behavioural deficits were observed due to HP. A dissociative effect of HP was observed in resting-state functional connectivity analysis, where HP led to hyper-connectivity in C57 mice and hypo-connectivity in App mice. Interestingly, sensory stimulation of limbs contralateral to OH revealed hyper-cortical activations in the non-occluded hemisphere of C57 HP mice, however, hypo-cortical activations were observed in App HP mice. Furthermore, we found that the UCAgO increased cortical and hippocampal microgliosis in both hemispheres of C57 and App mice, a bilateral increase in Aβ deposition was only observed in App mice. These results suggest that gradual cerebral HP leads to cortical network alterations in AD, which is partly mediated via activation of microglia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3