Localized APP pathology in the hippocampus is sufficient to result in progressive disorganization of the timing of neuronal firing patterns

Author:

Viana da Silva SilviaORCID,Haberl Matthias G.ORCID,Gaur Kshitij,Patel RinaORCID,Narayan Gautam,Ledakis Max,Fu Maylin L.,Koo Edward H.ORCID,Leutgeb Jill K.ORCID,Leutgeb StefanORCID

Abstract

AbstractDeficits in spatial navigation are among the early symptoms in Alzheimer’s disease patients, consistent with the hippocampal formation as the site for spatial computations and disease onset. Although the correspondence between the early symptoms and brain regions that are affected early in the disease has been recognized, it is not clear whether progressive cognitive decline is solely caused by a spreading pathology or whether a focal pathology can by itself cause aberrant neuronal activity in a larger network. These possibilities cannot be distinguished in standard disease models which broadly express APP across brain regions. We therefore generated a mouse model in which the expression of mutant human APP was limited to hippocampal CA3 cells (CA3-APP mice). We first asked whether the limited pathology in CA3 can result in memory deficits and found impaired performance of CA3-APP mice in a hippocampus-dependent memory task. By then recording in the CA1 region, we asked to what extent neuronal activity patterns emerged in a brain region which received projections from APP-expressing CA3 cells, but did itself not show any primary pathology. While the spatial firing patterns of CA1 cells were preserved, we observed a reduced theta oscillation frequency in the local field potential and in a subpopulation of principal cells in CA1. Furthermore, CA1 interneurons showed decreased theta oscillation frequencies, and this effect was even more pronounced in CA3 interneurons, which also do not directly express APP. Pathology that is highly localized and limited to presynaptic cells is thus sufficient to cause aberrant firing patterns in postsynaptic neuronal networks, which indicates that disease progression is not only from a spreading molecular pathology but also mediated by progressive physiological dysfunction.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3