The epigenetic modifier DOT1L regulates gene regulatory networks necessary for cardiac patterning and cardiomyocyte cell cycle withdrawal

Author:

Cattaneo Paola,Hayes Michael G. B.,Baumgarten Nina,Hecker Dennis,Peruzzo Sofia,Kunderfranco Paolo,Larcher Veronica,Zhang Lunfeng,Contu Riccardo,Fonseca Gregory,Spinozzi Simone,Chen Ju,Condorelli Gianluigi,Schulz Marcel H,Heinz Sven,Guimarães-Camboa Nuno,Evans Sylvia M.

Abstract

ABSTRACTMechanisms by which specific histone modifications regulate distinct gene regulatory networks remain little understood. We investigated how H3K79me2, a modification catalyzed by DOT1L and previously considered a general transcriptional activation mark, regulates gene expression in mammalian cardiogenesis. Early embryonic cardiomyocyte ablation ofDot1lrevealed that H3K79me2 does not act as a general transcriptional activator, but rather regulates highly specific gene regulatory networks at two critical cardiogenic junctures: left ventricle patterning and postnatal cardiomyocyte cell cycle withdrawal. Mechanistic analyses revealed that H3K79me2 in two distinct domains, gene bodies and regulatory elements, synergized to promote expression of genes activated by DOT1L. Surprisingly, these analyses also revealed that H3K79me2 in specific regulatory elements contributed to silencing genes usually not expressed in cardiomyocytes. As DOT1L mutants had increased numbers of postnatal mononuclear cardiomyocytes and prolonged cardiomyocyte cell cycle activity, controlled inhibition of DOT1L might be a strategy to promote cardiac regeneration post-injury.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3