Efficiency of heterogenous functional connectomes explains variance in callous-unemotional traits after computational lesioning of cortical midline and salience regions

Author:

Winters Drew E.ORCID,Leopold Daniel R.ORCID,Sakai Joseph T.ORCID,Carter R. McKellORCID

Abstract

AbstractCallous-unemotional (CU) traits are a youth antisocial phenotype hypothesized to be a result of differences in the integration of multiple brain systems. However, mechanistic insights into these brain systems are a continued challenge. Where prior work describes activation and connectivity of the connectome in relation to these systems, new mechanistic insights can be derived by removing nodes and characterizing changes in network properties (hereafter referred to as computational lesioning) to characterize the resilience and vulnerability of the brain’s functional connectome. Here, we study the resilience of connectome integration in CU traits by estimating changes in efficiency after computationally lesioning individual-level connectomes. From resting-state data of 86 participants (48% female, age 14.52±1.31) drawn from the Nathan Kline institute’s Rockland study, individual-level connectomes were estimated using graphical lasso. Computational lesioning was conducted both sequentially and by targeting global and local hubs. We calculated changes in network efficiency after each lesion. Then, elastic net regression was applied to determine how these changes explained variance in CU traits. Follow-up analyses characterized modeled node hubs, examined moderation, determined impact of targeting, and decoded the brain mask by comparing regions to meta-analytic maps. Elastic net regression revealed that computational lesioning of 23 nodes, network modularity, and Tanner stage explained variance in CU traits. Hub assignment of selected hubs differed at higher CU traits. No evidence for moderation between simulated lesioning and CU traits was found. Targeting global hubs increased efficiency and targeting local hubs had no effect at higher CU traits. Identified brain mask meta-analytically associated with more emotion and cognitive terms. Although reliable patterns were found across participants, adolescent brains were heterogeneous even for those with a similar CU traits score. Adolescent brain response to simulated lesioning revealed a pattern of connectome resiliency and vulnerability that explains variance in CU traits, which can aid prediction of youth at greater risk for higher CU traits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3