Energy extraction from air: structural basis of atmospheric hydrogen oxidation

Author:

Grinter RhysORCID,Kropp Ashleigh,Venugopal Hari,Senger Moritz,Badley Jack,Cabotaje Princess,Stripp Sven T.,Barlow Christopher K.,Belousoff Matthew,Cook Gregory M.,Vincent Kylie A.,Schittenhelm Ralf B.,Khalid SymaORCID,Berggren Gustav,Greening Chris

Abstract

AbstractDiverse aerobic bacteria use atmospheric H2as an energy source for growth and survival. This recently discovered yet globally significant process regulates the composition of the atmosphere, enhances soil biodiversity, and drives primary production in certain extreme environments. Atmospheric H2oxidation has been attributed to still uncharacterised members of the [NiFe]-hydrogenase superfamily. However, it is unresolved how these enzymes overcome the extraordinary catalytic challenge of selectively oxidizing picomolar levels of H2amid ambient levels of the catalytic poison O2, and how the derived electrons are transferred to the respiratory chain. Here we determined the 1.52 Å resolution CryoEM structure of the mycobacterial hydrogenase Huc and investigated its mechanism by integrating kinetics, electrochemistry, spectroscopy, mass spectrometry, and molecular dynamics simulations. Purified Huc is an oxygen-insensitive enzyme that couples the oxidation of atmospheric H2at its large subunit to the hydrogenation of the respiratory electron carrier menaquinone at its small subunit. The enzyme uses a narrow hydrophobic gas channel to selectively bind atmospheric H2at the expense of O2, while three [3Fe-4S] clusters and their unusual ligation by a D-histidine modulate the electrochemical properties of the enzyme such that atmospheric H2oxidation is energetically feasible. Huc forms an 833 kDa complex composed of an octamer of catalytic subunits around a membrane-associated central stalk, which extracts and transports menaquinone a remarkable 94 Å from the membrane, enabling its reduction. These findings provide a mechanistic basis for the biogeochemically and ecologically critical process of atmospheric H2oxidation. Through the first characterisation of a group 2 [NiFe]-hydrogenase, we also uncover a novel mode of energy coupling dependent on long-range quinone transport and pave way for the development of biocatalysts that oxidize H2in ambient air.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3