Engineering human spinal microphysiological systems to model opioid-induced tolerance

Author:

Cai Hongwei,Ao Zheng,Tian Chunhui,Wu Zhuhao,Kaurich Connor,Chen Zi,Gu Mingxia,Hohmann Andrea G.,Mackie Ken,Guo Feng

Abstract

AbstractOpioids are commonly used for treating chronic pain. However, with continued use, they may induce tolerance and/or hyperalgesia, which limits therapeutic efficacy. The human mechanisms of opioid-induced hyperalgesia are significantly understudied, in part, because current models cannot fully recapitulate human pathology. Here, we engineered novel human spinal microphysiological systems (MPSs) integrated with plug-and-play neural activity sensing for modeling human nociception and opioid-induced tolerance. Each spinal MPS consists of a flattened human spinal cord organoid derived from human stem cells and a 3D printed organoid holder device for plug-and-play neural activity measurement. We found that the flattened organoid design of MPSs not only reduces hypoxia and necrosis in the organoids, but also promotes their neuron maturation, neural activity, and functional development. We further demonstrated that prolonged opioid exposure resulted in neurochemical correlates of opioid tolerance and hyperalgesia, as measured by altered neural activity, reduced densities of glutamate transporter levels and downregulation of μ-opioid receptor expression of human spinal MPSs. The MPSs are scalable, cost-effective, easy-to-use, and compatible with commonly-used well-plates, thus allowing plug-and-play measurements of neural activity. We believe the MPSs hold a promising translational potential for studying human pain etiology, screening new treatments, and validating novel therapeutics for human pain medicine.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. United States National Pain Strategy for Population Research: Concepts, Definitions, and Pilot Data;The Journal of Pain,2016

2. Chronic pain: a review of its epidemiology and associated factors in population-based studies

3. Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016;Morbidity and Mortality Weekly Report,2018

4. Opioids in the management of chronic non-cancer pain: an update of American Society of the Interventional Pain Physicians’(ASIPP) Guidelines;Pain physician,2008

5. A comprehensive review of opioid-induced hyperalgesia;Pain physician,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3