Species Richness and Speciation Rates for all Terrestrial Animals Emerge from a Synthesis of Ecological Theories

Author:

Fernandes Lucas D.,Hintzen Rogier E.,Thompson Samuel E. D.ORCID,Barychka TatsianaORCID,Tittensor DerekORCID,Harfoot Mike,Newbold TimORCID,Rosindell JamesORCID

Abstract

AbstractThe total number of species on earth and the rate at which new species are created are fundamental questions for ecology, evolution and conservation. These questions have typically been approached separately, despite their obvious interconnection. In this manuscript we approach both questions in conjunction, for all terrestrial animals, which enables a more holistic integration and generates novel emergent predictions. To do this, we combine two previously unconnected bodies of theory: general ecosystem modelling and individual based ecological neutral theory. General ecosystem models provide us with estimated numbers of individual organisms, separated by functional group and body size. Neutral theory, applied within a guild of functionally similar individuals, connects species richness, speciation rate and number of individual organisms. In combination, for terrestrial endotherms where species numbers are known, they provide us with estimates for speciation rates as a function of body size and diet class. Extrapolating the same rates to guilds of ectotherms enables us to estimate the species richness of those groups, including species yet to be described. We find that speciation rates per species per million years decrease with increasing body size. Rates are also higher for carnivores compared to omnivores or herbivores of the same body size. Our estimate for the total number of terrestrial species of animals is in the range 1.03 − 2.92 million species, a value consistent with estimates from previous studies, despite having used a fundamentally new approach. Perhaps what is most remarkable about these results is that they have been obtained using only limited data from larger endotherms and their speciation rates, with the rest of the predictive process being based on mechanistic theory. This work illustrates the potential of a new approach to classic eco-evolutionary questions, while also adding weight to existing predictions. As we now face an era of dramatic biological change, new methods will be needed to mechanistically model global biodiversity at the species and individual organism level. This will be a huge challenge but the combination of general ecosystem models and neutral theory that we introduce here could be the only way to tractably achieve it.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. AmphibiaWeb. 2022. Amphibiaweb. https://amphibiaweb.org/ accessed: 2022-07-11.

2. Has the Earth’s sixth mass extinction already arrived?

3. The exploration of marine biodiversity: scientific and technological challenges;FundaciÓn BBVA,2006

4. Community Structure: A Neutral Model Analysis

5. Maintenance of biodiversity on islands

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3