A quarter-million-year-old polymorphism drives reproductive mode variation in the pea aphid

Author:

Rimbault M.,Legeai F.,Peccoud J.ORCID,Mieuzet L.,Call E.,Nouhaud P.ORCID,Defendini H.,Mahéo F.,Marande W.,Théron N.,Tagu D.,Le Trionnaire G.,Simon J.-C.,Jaquiéry J.

Abstract

AbstractAlthough asexual linages evolved from sexual lineages in many different taxa, the genetics of sex loss remains poorly understood. We addressed this issue in the pea aphidAcyrthosiphon pisum,whose natural populations encompass lineages performing cyclical parthenogenesis (CP) and producing one sexual generation per year, as well as obligate parthenogenetic (OP) lineages that can no longer produce sexual females but can still produce males. A SNP-based, whole-genome scan of CP and OP populations sequenced in pools (103 individuals from six populations) showed that a single X-linked region controls the variation in reproductive mode. This 840-kb region is highly divergent between CP and OP populations (FST= 34.9%), with >2000 SNPs or short Indels showing a high degree of association with the phenotypic trait. Comparison ofde novogenome assemblies built from long reads did not reveal large structural rearrangements between CP and OP lineages within the candidate region. This reproductive polymorphism still appears relatively ancient, as we estimated its age at ~0.25 million years from the divergence betweencpandopalleles. The low genetic differentiation between CP and OP populations at the rest of the genome (FST= 2.4%) suggests gene flow between them. Males from OP lineages thus likely transmit their op allele to new genomic backgrounds. This “contagious asexuality”, combined with environment-induced selection (each reproductive mode being favored under different climates) probably contributes to the long-term persistence of thecpandopalleles.SignificanceAsexual taxa occur in all major clades of Eukaryotes and derive from related sexual species. Yet, the genetic basis for these transitions is poorly known because crosses cannot generally be performed to genetically map the ability to propagate asexually. As a result, only one gene responsible for sex loss has been identified in one animal species. Here, using pooled genome sequencing, we identified an 840kb region (carrying 32 genes) that controls the transition to permanent asexuality in the pea aphid. We also revealed that sexual and asexual alleles diverged 0.25 million years ago and that asexual lineages likely persist through contagious asexuality, providing new insights into the mechanisms of coexistence of sexual and asexual lineages.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3