Deep Learning Enabled Label-free Cell Force Computation in Deformable Fibrous Environments

Author:

Padhi Abinash,Daw Arka,Sawhney Medha,Talukder Maahi M.,Agashe Atharva,Kale SohanORCID,Karpatne Anuj,Nain Amrinder S.ORCID

Abstract

AbstractThrough force exertion, cells actively engage with their immediate fibrous extracellular matrix (ECM) environment, causing dynamic remodeling of the environment and influencing cellular shape and contractility changes in a feedforward loop. Controlling cell shapes and quantifying the force-driven dynamic reciprocal interactions in a label-free setting is vital to understand cell behavior in fibrous environments but currently unavailable. Here, we introduce a force measurement platform termed crosshatch nanonet force microscopy (cNFM) that reveals new insights into cell shape-force coupling. Using a suspended crosshatch network of fibers capable of recovering in vivo cell shapes, we utilize deep learning methods to circumvent the fiduciary fluorescent markers required to recognize fiber intersections. Our method provides high fidelity computer reconstruction of different fiber architectures by automatically translating phase-contrast time-lapse images into synthetic fluorescent images. An inverse problem based on the nonlinear mechanics of fiber networks is formulated to match the network deformation and deformed fiber shapes to estimate the forces. We reveal an order-of-magnitude force changes associated with cell shape changes during migration, forces during cell-cell interactions and force changes as single mesenchymal stem cells undergo differentiation. Overall, deep learning methods are employed in detecting and tracking highly compliant backgrounds to develop an automatic and label-free force measurement platform to describe cell shape-force coupling in fibrous environments that cells would likely interact with in vivo.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3