A novel pH-sensitive reporter reveals the cocaine-regulated trafficking of dopamine transporters in neuronal processes

Author:

Saenz Jacqueline,Yao Oscar,Aggarwal Meha,Zhou Xiaofeng,Barker David J.,DiCicco-Bloom Emanuel,Pan Ping-YueORCID

Abstract

AbstractThe dopamine transporter (DAT) mediated DA reuptake is a major molecular mechanism for termination of dopaminergic signaling in the brain. Psychoactive substances such as cocaine act by inhibition of plasma membrane DAT function as well as by altering its expression. The precise manner and mechanism by which cocaine regulates DAT trafficking, especially at neuronal processes, are poorly understood. We have now engineered a novel pH-sensitive reporter for DAT by conjugating pHluorin to the second exofacial loop of human DAT. We show that DAT-pHluorin can be used to study DAT localization and its dynamic trafficking at neuronal processes. Using DAT-pHluorin we show that unlike neuronal soma and dendrites, which contain majority of the DATs in weakly acidic intracellular compartments, axonal DATs at both shafts and boutons are primarily (75%) localized to the plasma membrane, while varicosities contain abundant intracellular DAT within acidic intracellular structures. Using this novel reporter, we show, for the first time, that cocaine exposure leads to a brief DAT internalization followed by membrane reinsertion that lasts for days. We further show that the cocaine-induced DAT trafficking is sensitive to the activities of Synaptojanin1 phosphatase. Thus, our study using the newly engineered DAT optical reporter reveals the previously unknown dynamics and molecular regulation for cocaine-regulated DAT trafficking in neuronal processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3