Insitutype: likelihood-based cell typing for single cell spatial transcriptomics

Author:

Danaher PatrickORCID,Zhao Edward,Yang Zhi,Ross David,Gregory Mark,Reitz Zach,Kim Tae K.,Baxter Sarah,Jackson Shaun,He Shanshan,Henderson Dave,Beechem Joseph M.

Abstract

AbstractAccurate cell typing is fundamental to analysis of spatial single-cell transcriptomics, but legacy scRNA-seq algorithms can underperform in this new type of data. We have developed a cell typing algorithm, Insitutype, designed for statistical and computational efficiency in spatial transcriptomics data.Insitutype is based on a likelihood model that weighs the evidence from every expression value, extracting all the information available in each cell’s expression profile. This likelihood model underlies a Bayes classifier for supervised cell typing, and an Expectation-Maximization algorithm for unsupervised and semi-supervised clustering. Insitutype also leverages alternative data types collected in spatial studies, such as cell images and spatial context, by using them to inform prior probabilities of cell type calls. We demonstrate rapid clustering of millions of cells and accurate fine-grained cell typing of kidney and non-small cell lung cancer samples.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Regev, A. , et al. The Human Cell Atlas. (2017).

2. Quake SR , Tabula Sapiens Consortium . The Tabula Sapiens: a single cell transcriptomic atlas of multiple organs from individual human donors. Biorxiv. 2021 Jan 1.

3. Allen Institute for Brain Science (2004). Allen Mouse Brain Atlas [dataset]. Available from mouse.brain-map.org. Allen Institute for Brain Science (2011).

4. Schematic memories develop quickly, but are not expressed unless necessary

5. He S , Bhatt R , Brown C , Brown EA , Buhr DL , Chantranuvatana K , Danaher P , Dunaway D , Garrison RG , Geiss G , Gregory MT . High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nature Biotechnology. 2022 Oct 6:1–3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3