Junctophilin-2 promotes cardiomyocyte survival by blocking MURF1-mediated Junctin ubiquitination and proteasome-dependentdegradation

Author:

Ji Xiaoyun,Huang Yifan,Ni Rui,Zheng Dong,Fan Guo-Chang,Jones Douglas LORCID,Song Long-ShengORCID,Chakrabarti SubrataORCID,Su Zhaoliang,Peng TianqingORCID

Abstract

AbstractAimsJunctophilin-2 is required for the development, maturation and integrity of the t-tubule system and the gating stability of RyR2 in cardiomyocytes. This study investigated whether and how junctophilin-2 maintained junctin, a scaffold protein stabilizing RyR2, to prevent cardiomyocyte death under stress.MethodsCardiomyocytes were exposed to conditions of stress including palmitate, doxorubicin, or hypoxia/re-oxygenation. Adenoviral vectors were employed to manipulate expression of junctophilin-2 and junctin in cardiomyocytes. Molecular/cellular/biochemical analyses were conducted.ResultsDifferent conditions of stress decreased junctophilin-2 expression through aberrant autophagy and concomitantly induced a reduction of junctin protein in cardiomyocytes. Over-expression of junctophilin-2 preserved the protein levels of junctin and attenuated cytosolic Ca2+and apoptosis in cardiomyocytes under stress. Knockdown of junctophilin-2 reproduced the detrimental phenotypes of stress in cardiomyocytes. Notably, over-expression of junctin prevented cardiomyocyte death under stress whereas knockdown of junctin offset the protective effects conferred by junctophilin-2 over-expression. Mechanistically, junctophilin-2 blocked MURF1-junctin interaction thereby preventing junctin ubiquitination and proteasome-dependent degradation. Mass spectrometry analysis identified multiple ubiquitination sites on the junctin protein and the non-ubiquitinated junctin mutant (K8A/K102A/K107A/K140A) was resistant to degradation.ConclusionsThis study uncovers an unrecognized role of junctophilin-2 in preventing junctin ubiquitination and degradation in maintaining cytosolic Ca2+homeostasis. Both junctophilin-2 and junctin represent two new survival factors of cardiomyocytes and thus, may be new therapeutic targets for cardiac protection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3