MRPS36 provides a missing link in the eukaryotic 2-oxoglutarate dehydrogenase complex for recruitment of E3 to the E2 core

Author:

Hevler Johannes F.ORCID,Albanese PascalORCID,Cabrera-Orefice AlfredoORCID,Potter AlisaORCID,Jankevics AndrisORCID,Misic JelenaORCID,Scheltema Richard A.ORCID,Brandt UlrichORCID,Arnold SusanneORCID,Heck Albert J.R.ORCID

Abstract

The tricarboxylic acid (TCA) cycle, or Krebs cycle, is the central pathway of energy production in eukaryotic cells and plays a key part in aerobic respiration throughout all kingdoms of life. The enzymes involved in this cycle generate the reducing equivalents NADH and FADH2 by a series of enzymatic reactions, which are utilized by the electron transport chain to produce ATP. One of the pivotal enzymes in this cycle is 2-oxoglutarate dehydrogenase complex (OGDHC), which generates NADH by oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. OGDHC is a megadalton protein complex originally thought to be assembled just from three catalytically active subunits (E1o, E2o, E3). In fungi and animals, however, the protein MRPS36 has more recently been proposed as a putative additional component. Based on extensive XL-MS data obtained from measurements in mice and bovine heart mitochondria, supported by phylogenetic analyses, we provide evidence that MRPS36 is an essential member of OGDHC, albeit only in eukaryotes. Comparative sequence analysis and computational structure predictions reveal that in eukaryotic OGDHC, E2o does not contain the peripheral subunit-binding domain (PSBD), present in bacterial and archaeal E2o’s. We propose that in eukaryotes MRPS36 evolved as an E3 adaptor protein, functionally replacing the PSBD. We further provide a refined structural model of the complete eukaryotic OGDHC containing 16 E1o, 12 E3, and 6 subunits of MRPS36 accommodated around the OGDHC core composed of 24 E2o subunits (3.45 MDa). The model provides new insights into the OGDH complex topology and stipulates putative mechanistic implications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3