Convergence and molecular evolution of floral fragrance after independent transitions to self–fertilization

Author:

Wozniak Natalia,Sartori Kevin,Kappel ChristianORCID,Zhao Lihua,Erban Alexander,Fehrle Ines,Jantzen Friederike,Orsucci Marion,Rosa StefanieORCID,Lenhard Michael,Kopka Joachim,Sicard Adrien

Abstract

AbstractThe study of the independent evolution of similar characters can highlight important ecological and genetic factors that drive phenotypic evolution. The transition from reproduction by outcrossing to self-fertilization has occurred frequently throughout plant evolution. A common trend in this transition is the reduction of flower features in the selfing lineages, including display size, flower signals and pollinators’ rewards. These changes are believed to evolve because resources invested in building attractive flowers are reallocated to other fitness functions as the pressures to attract pollinators decrease. We investigated the similarities in the evolution of flower fragrance after independent transitions to self-fertilization in Capsella. We identified a large number of compounds that are similarly changed in different selfer lineages, such that the composition of the flower scent can predict the mating system in this genus. We further demonstrate that the emission of some of these compounds convergently evolved based on mutations in different genes. In one of the Capsella selfing lineages, the loss of β-ocimene emission was caused by a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2 without apparent effects on its biosynthetic activity. This mutation appears to have been selected at the early stage of this selfing lineage establishment through the capture of a variant segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggest that the emission of specific volatiles has important fitness consequences in self-fertilizing plants without obvious energetic benefits.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3