Abstract
AbstractBackgroundThere has been concern throughout the COVID-19 pandemic over highly stressed healthcare capacities being further pressured by seasonal influenza epidemics. Interventions to tackle the spread of SARS-CoV-2, the causative agent of COVID-19, have unsettled the respiratory pathogen landscape, including worldwide patterns of influenza activity. The implications of these disruptions for subsequent influenza seasons has been uncertain.MethodsTo conduct scenario analyses ahead of the 2020/2021 and 2021/2022 influenza seasons in England, we used a pre-existing age-structured, multi-strain compartmental model of influenza transmission and case severity, which included propagation of immunity between influenza seasons and had been previously fit to historical data. For the pre-2020/2021 influenza season, our scenarios varied the level of vaccine uptake and the inclusion/exclusion of nonpharmaceutical interventions (NPIs). We estimated the relative amount of health episode occurrences: symptomatic cases resulting in a GP consultation, hospital inpatient admissions, fatalities. In the pre-2021/2022 influenza season analysis, compared with a counterfactual case where influenza activity remained at historic levels in the 2020/2021 influenza season, we estimated the change in the same set of health episode occurrences in the 2021/2022 influenza season when assuming there was no influenza in circulation during the 2020/2021 influenza season.ResultsAttaining coverage of 75% in target groups for the 2020/2021 influenza season reduced health episode occurrences by 40–50% when compared to maintaining the 2019/2020 vaccination programme coverage and uptake levels. Having NPIs maintained throughout the entire influenza season saw 60-80% reductions in severe case outcomes. Combining an expanded vaccination programme and the use of NPIs could suppress the seasonal influenza epidemic, with reductions as much as 90–100%. In the absence of influenza transmission during the 2020/2021 influenza season, under our modelling assumption of mixing patterns returning to pre-2020 levels we projected a compensatory influenza epidemic with 1.2 to 2.2 times as many severe health episode occurrences in the subsequent 2021/2022 influenza season.ConclusionsIn the context of the time the work was originally conducted, the modelled scenarios indicated how bolstering vaccine coverage and reduction in contacts could likely allay resurgent seasonal influenza epidemics. Our analyses of the winter pressures that may be inflicted by other respiratory infections during the COVID-19 pandemic are one example of the modelling insights provided to the Scientific Pandemic Influenza Group on Modelling, Operational sub-group (SPI-M-O) for the Scientific Advisory Group for Emergencies (SAGE) in the UK.
Publisher
Cold Spring Harbor Laboratory