Forecasting Influenza-Like Illness (ILI) during the COVID-19 Pandemic

Author:

Turner Stephen D.ORCID,Hulme-Lowe Chris,Nagraj VPORCID

Abstract

AbstractNear-term probabilistic forecasts for infectious diseases such as COVID-19 and influenza play an important role in public health communication and policymaking. From 2013-2019, the FluSight challenge run by the Centers for Disease Control and Prevention invited researchers to develop and submit forecasts using influenza-like illness (ILI) as a measure of influenza burden. Here we examine how several statistical models and an autoregressive neural network model perform for forecasting ILI during the COVID-19 pandemic, where historical patterns of ILI were highly disrupted. We find that the autoregressive neural network model which forecasted ILI well pre-COVID still performs well for some locations and forecast horizons, but its performance is highly variable, and performs poorly in many cases. We found that a simple exponential smoothing statistical model is in the top half of ranked models we evaluated nearly 75% of the time. Our results suggest that even simple statistical models may perform as well as or better than more complex machine learning models for forecasting ILI during the COVID-19 pandemic. We also created an ensemble model from the limited set of time series forecast models we created here. The limited ensemble model was rarely the best or the worst performing model compared to the rest of the models assessed, confirming previous observations from other infectious disease forecasting efforts on the less variable and generally favorable performance of ensemble forecasts. Our results support previous findings that no single modeling approach outperforms all other models across all locations, time points, and forecast horizons, and that ensemble forecasting consortia such as the COVID-19 Forecast Hub and FluSight continue to serve valuable roles in collecting, aggregating, and ensembling forecasts using fundamentally disparate modeling strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Psychological AI: Designing Algorithms Informed by Human Psychology;Perspectives on Psychological Science;2023-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3