Abstract
AbstractTranslating genome-wide association study (GWAS) loci into causal variants and genes requires accurate cell-type-specific enhancer-gene maps from disease-relevant tissues. Building enhancer-gene maps is essential but challenging with current experimental methods in primary human tissues. We developed a new non-parametric statistical method, SCENT (Single-Cell ENhancer Target gene mapping) which models association between enhancer chromatin accessibility and gene expression in single-cell multimodal RNA-seq and ATAC-seq data. We applied SCENT to 9 multimodal datasets including > 120,000 single cells and created 23 cell-type-specific enhancer-gene maps. These maps were highly enriched for causal variants in eQTLs and GWAS for 1,143 diseases and traits. We identified likely causal genes for both common and rare diseases. In addition, we were able to link somatic mutation hotspots to target genes. We demonstrate that application of SCENT to multimodal data from disease-relevant human tissue enables the scalable construction of accurate cell-type-specific enhancer-gene maps, essential for defining non-coding variant function.
Publisher
Cold Spring Harbor Laboratory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献