Fast computation of principal components of genomic similarity matrices

Author:

Hahn GeorgORCID,Lutz Sharon M.,Hecker Julian,Prokopenko Dmitry,Cho Michael H.ORCID,Silverman Edwin K.,Weiss Scott T.,Lange Christoph

Abstract

AbstractThe computation of a similarity measure for genomic data, for instance using the (genomic) covariance matrix, the Jaccard matrix, or the genomic relationship matrix (GRM), is a standard tool in computational genetics. The principal components of such matrices are routinely used to correct for biases in, for instance, linear regressions. However, the calculation of both a similarity matrix and its singular value decomposition (SVD) are computationally intensive. The contribution of this article is threefold. First, we demonstrate that the calculation of three matrices (the genomic covariance matrix, the weighted Jaccard matrix, and the genomic relationship matrix) can be reformulated in a unified way which allows for an exact, faster SVD computation. An exception is the Jaccard matrix, which does not have a structure applicable for the fast SVD computation. An exact algorithm is proposed to compute the principal components of the genomic covariance, weighted Jaccard, and genomic relationship matrices. The algorithm is adapted from an existing randomized SVD algorithm and ensures that all computations are carried out in sparse matrix algebra. Second, an approximate Jaccard matrix is introduced to which the fast SVD computation is applicable. Third, we establish guaranteed theoretical bounds on the distance (in L2 norm and angle) between the principal components of the Jaccard matrix and the ones of our proposed approximation, thus putting the proposed Jaccard approximation on a solid mathematical foundation. We illustrate all computations on both simulated data and data of the 1000 Genome Project, showing that the approximation error is very low in practice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3