Towards Greater Neuroimaging Classification Transparency via the Integration of Explainability Methods and Confidence Estimation Approaches

Author:

Ellis Charles A.ORCID,Miller Robyn L.ORCID,Calhoun Vince D.ORCID

Abstract

AbstractThe field of neuroimaging has increasingly sought to develop artificial intelligence-based models for neurological and neuropsychiatric disorder automated diagnosis and clinical decision support. However, if these models are to be implemented in a clinical setting, transparency will be vital. Two aspects of transparency are (1) confidence estimation and (2) explainability. Confidence estimation approaches indicate confidence in individual predictions. Explainability methods give insight into the importance of features to model predictions. In this study, we integrate confidence estimation and explainability approaches for the first time. We demonstrate their viability for schizophrenia diagnosis using resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) data. We compare two confidence estimation approaches: Monte Carlo dropout (MCD) and MC batch normalization (MCBN). We combine them with two gradient-based explainability approaches, saliency and layer-wise relevance propagation (LRP), and examine their effects upon explanations. We find that MCD often adversely affects model gradients, making it ill-suited for integration with gradient-based explainability methods. In contrast, MCBN does not affect model gradients. Additionally, we find many participant-level differences between regular explanations and the distributions of explanations for combined explainability and confidence estimation approaches. This suggests that a similar confidence estimation approach used in a clinical context with explanations only output for the regular model would likely not yield adequate explanations. We hope that our findings will provide a starting point for the integration of the two fields, provide useful guidance for future studies, and accelerate the development of transparent neuroimaging clinical decision support systems.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3