Pangenome Graph Construction from Genome Alignment with Minigraph-Cactus

Author:

Hickey GlennORCID,Monlong JeanORCID,Ebler JanaORCID,Novak AdamORCID,Eizenga Jordan M.ORCID,Gao Yan,Marschall TobiasORCID,Li HengORCID,Paten BenedictORCID,

Abstract

AbstractReference genomes provide mapping targets and coordinate systems but introduce biases when samples under study diverge sufficiently from them. Pangenome references seek to address this by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but thanks to advances in long-read sequencing, high-quality phased assemblies are becoming widely available. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph’s ability to consistently represent variation at different scales and reduces biases introduced by reference-based variant calls. Pangenome construction in this way is equivalent to multiple genome alignment. Here we present the Minigraph-Cactus pangenome pipeline, a method to create pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium (HPRC). This tool was designed to build graphs containing all forms of genetic variation while still being practical for use with current mapping and genotyping tools. We show that this graph is useful both for studying variation within the input haplotypes, but also as a basis for achieving state of the art performance in short and long read mapping, small variant calling and structural variant genotyping. We further measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes, and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods, even after projecting back to GRCh38. We also demonstrate that our method can apply to nonhuman data by showing improved mapping and variant detection sensitivity with aDrosophila melanogasterpangenome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3